Kirchberg X-algebras with real rank zero and intermediate cancellation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separative Exchange Rings and C * - Algebras with Real Rank Zero

For any (unital) exchange ring R whose finitely generated projective modules satisfy the separative cancellation property (A ⊕ A ∼= A ⊕ B ∼= B ⊕ B =⇒ A ∼= B), it is shown that all invertible square matrices over R can be diagonalized by elementary row and column operations. Consequently, the natural homomorphism GL1(R) → K1(R) is surjective. In combination with a result of Huaxin Lin, it follow...

متن کامل

Invertibility-preserving Maps of C∗-algebras with Real Rank Zero

In 1996, Harris and Kadison posed the following problem: show that a linear bijection between C∗-algebras that preserves the identity and the set of invertible elements is a Jordan isomorphism. In this paper, we show that if A and B are semisimple Banach algebras andΦ : A→ B is a linear map onto B that preserves the spectrum of elements, thenΦ is a Jordan isomorphism if either A or B is a C∗-al...

متن کامل

Extremal Richness of Multiplier and Corona Algebras of Simple C∗-algebras with Real Rank Zero

In this paper we investigate the extremal richness of the multiplier algebra M(A) and the corona algebra M(A)/A, for a simple C∗-algebra A with real rank zero and stable rank one. We show that the space of extremal quasitraces and the scale of A contain enough information to determine whether M(A)/A is extremally rich. In detail, if the scale is finite, then M(A)/A is extremally rich. In import...

متن کامل

-actions on Kirchberg Algebras

We classify a large class of Z-actions on the Kirchberg algebras employing the Kasparov group KK as the space of classification invariants.

متن کامل

Of Separative Exchange Rings and C * - Algebras with Real Rank Zero

For any (unital) exchange ring R whose finitely generated projective modules satisfy the separative cancellation property (A ⊕ A ∼= A ⊕ B ∼= B ⊕ B =⇒ A ∼= B), it is shown that all invertible square matrices over R can be diagonalized by elementary row and column operations. Consequently, the natural homomorphism GL1(R) → K1(R) is surjective. In combination with a result of Huaxin Lin, it follow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Noncommutative Geometry

سال: 2014

ISSN: 1661-6952

DOI: 10.4171/jncg/178